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Fig. 4. EOS sensitivity as a function of air gap h. The solid and dashed
lines connect the points shown by squares and diamonds, for time-resolved
and calibration signals, respectively. The triangles and the circles are the data
of [7] and [8], respectively.

IV. SUMMARY

We have studied invasiveness and sensitivity of LiTaO3 external
probes for electrooptic sampling of millimeter-wave circuits and
devices. Our measurements show two effects that contribute to
distortion of the measured signals. The first is dispersion on the
coplanar stripline caused by the presence of the LiTaOs superstrate.
However, even once this dispersion is insignificant, pulse distortion
is observed that we attribute to frequency-dependent signal reflection
at the front probe facet. Both of these distortions can be reduced by
using a noncontact arrangement with an air gap between the tip and
the transmission line.
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Analysis of Microstrip Discontinuities Using the Spatial
Network Method with Absorbing Boundary Conditions

Dragos Bica and Benjamin Beker

Abstract—In this paper it is shown that spatial network method (SNM)
can be formally derived as a finite differencing scheme, which ensures
that the necessary stability and convergence conditions are met. For the
first time, Mur and Higdon second-order absorbing boundary conditions
(ABC’s) have been used in conjunction with SNM. It has been found that
the Higdon second-order ABC’s perform better than the Mur algorithm
for guided wave problems with inhomogeneous substrates. Finally, it is
shown that SNM can successfully be employed for the analysis of planar
and three-dimensional (3-D) microstrip discontinuities in open or shielded
environments.

I. INTRODUCTION

During the past decade, the interest in microstrip discontinuities
has substantially increased, as can be seen from the growing number
of reported research activity on the subject [1]-{5], [12], and [13].
The driving factors behind this trend are increasing frequencies
of operation and the continuing need for more accurate design
methods for microwave integrated circuits (MIC’s). Some microstrip
discontinuities, such as steps and bends are due to the interconnects
of various MIC’s. Others, such as tuning stubs or resonant strips, are
used to achieve specific functionality.

Several methods have already been employed for the study of
microstrip discontinuities. Green’s function based methods, such as
the integral equation in spectral domain method [1] or the time
domain method of lines [2], have been used to characterize planar
discontinuities (open ends, stubs, gaps, steps in width) as well as full
3-D problems such as vias and air bridges [3]. Compared against ex-
perimental data, these methods offer very accurate numerical results.
The aforementioned methods provide the frequency response of the
discontinuity, taking into account the boundary conditions which are
built into the Green’s functions. However, for complex, nonplanar
geometries and for inhomogeneous substrates, such methods are
difficult to implement, and volumetric methods are often used instead.

Examples of volumetric methods are the finite difference time
domain (FDTD) technique, transmission line matrix method (TLM),
and spatial network method (SNM). All of them have been used
in the study of microstrip discontinuities. The TLM method, in its
frequency domain form, has been used to calculate the S-parameters
of transmission line interconnects such as vias and air bridges [4].
The FDTD method has been applied to the study of step, open end,
and gap microstrip discontinuities [5].

Time domain differential equation methods can easily accommo-
date closed boundary conditions associated with shielded structures,
but they do not have the inherent ability to simulate the open boundary
conditions. To overcome such limitations, several absorbing boundary
conditions (ABC’s) have been proposed [6]-[8], mostly for the FDTD
method, and more recently for TLM [9]. The ABC’s have low
numerical reflectivity (<—25 dB) if used within appropriate limits, as
shown in [8]. The errors introduced by the ABC's can be minimized
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Fig. 2. |S21] of an open symmetric grounded stub.

using techniques such as the geometry rearrangement technique [10],
which places the termination planes at equal distances away from the
discontinuity.

The spatial network method (SNM) is derived from the differential
form of Maxwell’s equations using transmission line formalism and
Bergeron’s technique. It has been used in the study of waveguides,
filters, bend discontinuities, and interconnects [11], [12]. However,
numerical aspects of SNM, such as the convergence and stability

of the algorithm. as well as a formulation of its finite differencing
scheme, have not been formally addressed to date.

In this paper, a finite differencing scheme for SNM is given,
and it shows that the algorithm has intrinsic stability, since the
At/Ar is predetermined by the
transmission line equations. Under certain conditions, it is also shown
that finite difference scheme employed in SNM has the same form
as FDTD.

normalized algorithm velocity co -
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Fig. 3.

Until now, the use of second-order ABC’s has not yet been
attempted in SNM. In this paper, the second-order Higdon boundary
operators are proposed for use in laitice truncation. For guided
wave problems with inhomogeneous substrates the Higdon boundary
conditions are found to keep numerical reflection levels to about —16
dB.

In order to validate the SNM/ABC’s algorithm, the .S-parameters of
a symmetrical stub, were computed and compared against previously
published and measured data. Finally, a multilayered structure, with
two overlapping open end microstrips was also analyzed. This
discontinuity may be used as a way of coupling transmission lines
at very high frequencies. The S-parameters of this structure were
computed as functions of the overlap dimensions and the frequency
of excitation.

II. SUMMARY OF THE FORMULATION

The basics of the SNM algorithm have been described extensively
in [11] and [12]. For the electrical node associated with F. (Fig. 3,
[12]) the nodal equation can be written as

Vi, g k) =
R (U7 + U 4 U 4 UT) + Z - 0,

1
Zo+Re - [4+ 2o 4- G4, j. k)] o
where
At * Co
R 420X - A
—1 2-Azx
G = o=1I
and
Zo =,/ *2.
€0
The terms ¥, %k = 1,2, 3, 4 account for waves propagating

|S11] of a 3-D two microstrip discontinuity as function of the overlap.

toward the node on the four transmission lines attached to it. The
term W, is associated with the flow of current through the capacitor
placed at the F, node joining the four transmission lines. Using
normalizations Vg = Vinr - /lto and Ver, = Vg - \/2,, where
k = &, y. z, (1) can be expressed in a modified form, which makes
a distinction between the electric and magnetic variables

Vi Gk =
S LA S Vi Gee - Vil 4o k) + Lou(i 4. )
k k=y.z

4 + Gee + ge
2
where
_%
gce - RC
and
gec = R

Subsequently the currents flowing through the ends of the trans-
mission lines connected at the single E. node are computed using
Vi 4, jo k) and U, k=1, 2, 3, 4, as described in [12].

In order to illustrate SNM's conformity to finite differencing
scheme, all currents in (2) must be expressed in terms of electric
and magnetic voltages only. It can be shown that the current through
the capacitor, using the recurrence expression obtained from i =
C . (dV/dt). can be written

Il §, k) =
Geek * [Vvetk(io j- k) -2- ‘/;tlc_l(ia ja k)
+2- V26, 4, k) — o+ (1) 2 VA, 4, k)
+ (=D 2. V4G, g, B 3)



1160

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL 44, NO 7, JULY 1996

0
E s P SER AR SEIINE T o e
[ O B T e v Al L
B E EITENTS ] o ¥
-10
m
jel
£ -15
ko
o 20
e
2
g 25
<
p=
30 F —o—25 mm apart —&—2.0 mm apart
E — A~ 10 mm apart ——ends aligned
35 F — % -1.0mm overlap --©--2.0 mm overlap
L — -+~ 25mm overlap
_40 [ 1 1 L 1 1 1 | WD Y N S | 1 - 1. 1 1 1 FI— A 1 1 L | WS S U T | A 1 1 1 Il
15 3.0 4.5 60 7.5 90 105 120 13.5 15.0
Frequency (GHz)

Fig. 4.

The use of (3) 1n (2) leads to the following finite difference form
of SNM

EWNN (i 4 k) =
4

S o PR & S S L
14 gc+ geex (e g k) 44 gc + yeex
<ES(i, g k) + =HUG Gk

4+ 9 + gies
+H g+ LR+ Hy6, jok—1) = Hy1, . k)]
Yeer 1 - t—=1,-
= B, g k) =3 BN gk
R Er—— (B (e, g k) (i, 4. k)

A BN G R A+ (D)2 BN R 4)

The above equation represents the finite difference scheme derived
from a hyperbolic system of equations. In general, the conductance
associated with the relative permuttivity of the dielectric is defined as
Joe = (AxfAt cy) &, —4, and it is zero (g.. = 0) if the dielectric
is free space (¢, = 1). In this case. (4) can be simplified as

BN k) = BN R+ 5 [ H R

+HU g+ L k) + Hy(l k= 1)

— HL(, R (5)
which represents the FDTD discretization of Maxwell’s curl equation
for E, with a Courant number of 0.5. In summary, the SNM
algorithm and FDTD method belong to the same family of finite
differencing schemes and they are identical for the particular case of
free space dielectric.

To date, ABC’s in SNM have only been implemented as matched
loads terminating the outermost transmission lines at the lattice
boundaries. but their behavior has not been analyzed in detail [12].
In this paper, the use of second-order Higdon absorbing boundary
conditions for the SNM algorithm is proposed.

The second-order Higdon boundary conditions can be derived using
the coefficient matrix proposed by Luebbers in [8]. With the help of

|S21| of a 3-D two microstrip discontinuity as function of the overlap.

the following notation: b, = (., » ¢ - At — Azx)/{a-c- At + Az),
the second-order boundary conditions can be written as

EtN0. 5. k) =
(by +by)- EY(0. j, k) — by - by - B0, j. k)
— (b1 +ba) BTN k) (26— &2 =2 by - bo)
CEY LG k) = [by - (1= &)+ by (1 &)
CECNAL K = by by - BT, R
b (L= &) +ba (1= &) E' (2.5, k)

—(I=&)1=&) E7N2 5. k). (6)

These ABC’s have been tested for a variety of problems ranging
from plane wave scattering to partially loaded waveguides and totally
open structures. The numerical reflections for the problems in this
paper were as low as —23 dB for guided wave structures with
uniform dielectric, but increased to —16 dB for transmission lines
with inhomogeneous substrates.

HI. NUMERICAL RESULTS

Both Mur and Higdon absorbing boundary conditions were tested
in conjunction with the SNM algorithm. The emphasis of the study
was placed on their behavior when applied to transmicgion line type
structures. The Higdon ABC's performed better both for structures
having uniform and nonuniform dielectrics. The overall results,
displaying both the excitation and reflections from the truncated
boundary at the open ends of a shielded uniform microstrip transmis-
sion line are shown 1n Fig. 1. The computational space in uniformly
subdivided into a I/ X m x n = 12 x 12 x 60 lattice along the x-
. ¥-, and z-directions, respectively, with A = 0.75 mm. The F,
component is calculated midway along the z-axis at 1000 time steps
(At = 0.625 ps). It can be seen that the Higdon absorbing boundary
conditions have reflectivity of about —23 dB and —16 dB for uniform
and nonuniform dielectric, respectively.

In all subsequent examples, the S-parameters were computed by
taking FFT's of time domain wave forms. The simulations were
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performed on a i486DX2-66 MHz PC requiring computing time of
2.5 ms per unit cell and time step. On a 90 MHz PS5, the computing
time was 0.9 ms per unit cell and time step.

To validate the combination of SNM with ABC’s, the S-parameters
were computed for a symmetric open stub-type structure, which is
shown in the inset of Fig. 2. The S3; parameter of the double stub
is shown in Fig. 2, from which it can be seen that the data obtained
with SNM is similar to data published in [10]. Both results, as well
as the measured data, predict resonant frequencies at about 8 and 19
GHz. The structure in Fig. 2 was discretized into a I X m X n =
18 x 61 x 80 lattice, with A = 0.4 ram. The total simulation time
was t = 9000 x At, where At = 0.444 ps. The S2; parameters
show a good agreement near the first resonance. The SNM also
appears to predict the value of S3; at the second resonant frequency
with better accuracy than FDTD, when compared to the measured
data.

Finally, the use of SNM is demonstrated for the analysis of a 3-
D microstrip discontinuity. The multilayered substrate, shown in the
inset of Fig. 3, is placed inside a waveguide with shielded side walls
and open ends. The inner ends of the two microstrips are allowed
to overlap or be slightly apart. The structure is discretized such that
IxmXxn=21x21x4l, with A = 0.5 mm. For At = 0.83 ps,
the total simulation time was ¢t = 1600 x At. The computed S11 and
S21 parameters are shown in Figs. 3 and 4, respectively. Notice that
as the ends of the lines are brought closer together, the magnitude
S11 decreases, while that So; increases. At higher frequencies, on
the other hand, when the lines are tightly coupled, the magnitude of
So1 is higher than that of Si;.

IV. CoONCLUSION

The SNM algorithm was presented as a formal statement of the
finite difference numerical scheme for the solution of Maxwell’s
equations. It was shown that the second-order ABC’s can be em-
ployed in SNM for lattice truncation when dealing with open region
problems. SNM is utilized in the study of planar and multilayered
microstrip discontinuities. For the multilayered structure, it is shown
that the effects of the overlap dimensions are very influential on the
S-parameters. It is found that the SNM simulations can be effectively
performed on a PC, yielding results comparable in accuracy to those
obtained on lager computing platforms.
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Input Impedance of a Coaxial Probe Located Inside a
Rectangular Cavity: Theory and Experiment

M. S. Leong, L. W. Li, P. S. Kooi, T. S. Yeo, and S. L. Ho

Abstract— In this work, theoretical and experizmental analyzes of
input impedance of a coaxial probe located in a rectangular cavity
are presented. The technique of dyadic Green function (DGF) and the
method of moments (MM) are applied in the theoretical analysis. For
the magnetic equivalent source with a y-directed discontinuity, two
alternative representations of magnetic DGF for a rectangular cavity
are derived in this paper. Numerical input reactance and phase of the
reflection coefficient at the base of the probe obtained using both the
conventional form and the alternative representations of the DGF are
compared with the experimental data collected. It is found that the
computed results obtained utilizing alternative DGF’s agree better with
the measured data.

I. INTRODUCTION

The probe radiation inside a rectangular waveguide or cavity is an
interesting and old problem. Since Schwinger studied the single-post
problem during World War 1I for small posts, there have been many
new advances on this problem. First, Collin [1, 1st ed.], early in 1960;
Al-Hakkak in 1969 [2]; and Williamson [3], [4] from 1972 to 1985,
used an important assumption that the current could be effectively
represented by a filamentary current located at the center of the probe.
In 1983 and 1984, Leviatan [5], [6] and in 1987, Jarem [7] used
the cight equivalent current filaments representation to replace the
conducting post surface and modified the previous single post with
a central current. In 1991, Jarem [8] and in 1992 Liang et al. [9]
included the effects from the frill current due to the probe located
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